Can the oyster industry survive ocean acidification?

Excerpt

For four frustrating months in 2007, Mark Wiegardt and his wife, Sue Cudd, witnessed something unsettling at their Oregon oyster hatchery: tank bottoms littered with dead baby oysters. Usually, the larvae are grown until they're three weeks old and a quarter of a millimeter in size -- 10 million bunched together are roughly the size of a tennis ball. Then they are shipped to 50-some growers in the U.S., Canada and Mexico. But that summer, the oysters died before they were ready to ship. Whiskey Creek Shellfish Hatchery struggled to fill a third of its orders.

"You have good and bad weeks, but this was a blanket kill on everything we tried to do," recalls Wiegardt. "We thought we were going out of business because we couldn't make the larvae grow."

Screenshot 2021-06-28 at 14.44.52.png

It turned out that "corrosive" seawater, which makes it harder for young oysters to build shells, was largely to blame. Like the atmosphere, the world's seas are burdened by our fossil fuel use and deforestation. The ocean has sponged up a quarter of the carbon dioxide humans have produced since the Industrial Revolution, steadily lowering its pH. Today's seas are 30 percent more acidic than their pre-industrial ancestors. By the turn of the century, scientists anticipate they will be 150 percent more so -- a trend that led National Oceanic and Atmospheric Administration (NOAA) chief Jane Lubchenco to call ocean acidification climate change's "equally evil twin."

Even if manmade carbon emissions ceased tomorrow, the West Coast would face decades of increasingly corrosive water because the ocean is laden with CO2 from decades past and will continue to absorb the CO2 already in the air, slowly changing its chemistry. "The train has already left the station," says Richard Feely, a senior fellow at NOAA's Pacific Marine Environmental Laboratory in Seattle. "If we don't reduce carbon dioxide emissions, we'll (see) conditions that will be corrosive to more species."

Creatures that build shells from calcium carbonate -- pteropods, for example, tiny sea snails that swim with dainty "wings" and nourish the pink salmon that sustain Alaska's fishing industry -- are particularly vulnerable. In water, CO2 becomes carbonic acid, which releases hydrogen ions when it breaks down. The hydrogen ions bond with carbonate ions, stealing them from animals that use them to form calciferous homes. Experiments with non-shelled species have also yielded disturbing results. Clownfish -- the orange-and-white-striped reef dwellers immortalized in Finding Nemo -- seem to go deaf when raised in seawater with CO2 levels predicted to be present by 2050 and 2100.

But for Northwest oyster growers, ocean acidification is no distant threat. The Whiskey Creek die-offs, which continued in 2008, dealt the industry a serious blow, since the hatchery supplies the majority of independent West Coast growers. Production also slumped at Washington's Taylor Shellfish Inc., another major producer, in 2008 and 2009, and acidic water probably played a role. These declines came at an especially vulnerable moment: Larvae growing naturally at Washington's Willapa Bay, a chief source of wild seed, had also been failing, because the water was too cold. Seed shortages contributed to the region's 22 percent drop in production between 2005 and 2009, according to a trade group. "Ocean acidification poses a serious threat to Washington's marine economy, cultures, and environment," concluded a recent report from Washington state, the West Coast oyster industry's hub.

Read the full article at High Country News.

Brendon Bosworth

Brendon Bosworth is a communications specialist and the principal consultant at Human Element Communications.

https://www.humanelementcommunications.com
Previous
Previous

California’s carbon market may succeed where others have failed

Next
Next

Medicine offers hope for heroin users in Mitchells Plain